What Necessitate Multiply Sectioned Bayesian Networks?

نویسنده

  • Yang Xiang
چکیده

Multiply sectioned Bayesian networks (MSBNs) provide a coherent framework for probabilistic reasoning in cooperative multi-agent distributed interpretation systems (CMADISs). Previous work on MSBNs fo-cuses on the suuciency of MSBNs for representation and inference with uncertain knowledge in CMADISs. Since several representation choices were made in the formation of a MSBN, it appears unclear whether certain choices were necessary. For example, it is unclear why a hypertree organization of agents was imposed. This study focuses on the necessity of MSBNs for representation of uncertain knowledge in CMADISs. We identify a small set of fundamental choices which logically implies a MSBN or some equivalent representations. We consider privacy of agents to be essential if we are to allow agents developed by independent vendors so that vendors' know-how can be protected. We found that the privacy of agents plays an important role in this necessity analysis. The study provides insights into the MSBN framework and valuable guid-ances to multiagent system researchers whether they are satissed with the framework or unsatissed with the restrictions imposed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of multiagent inference methods in multiply sectioned Bayesian networks

As intelligent systems are being applied to larger, open and more complex problem domains, many applications are found to be more suitably addressed by multiagent systems. Multiply sectioned Bayesian networks provide one framework for agents to estimate what is the true state of a domain so that the agents can act accordingly. Existing methods for multiagent inference in multiply sectioned Baye...

متن کامل

Some Practical Issues in Modeling Diagnostic Systems with Multiply Sectioned Bayesian Networks

Multiply Sectioned Bayesian Networks (MSBNs) provide a distributed framework for diagnosis of large systems based on probabilistic knowledge. To ensure exact inference, the partition of a large system into subsystems and the representation of subsystems must follow a set of technical constraints. How to satisfy these goals for a given system may not be obvious to a practitioner. In this paper, ...

متن کامل

Inference in Multiply Sectioned Bayesian

As Bayesian networks are applied to larger and more complex problem domains, search for exible modeling and more eecient inference methods is an ongoing eeort. Multiply sectioned Bayesian networks (MSBNs) extend the HUGIN inference for Bayesian networks into a coherent framework for exible modeling and distributed inference. Lazy propagation extends the Shafer-Shenoy and HUGIN inference methods...

متن کامل

Comparing Alternative Methods for Inference in Multiply Sectioned Bayesian Networks

Multiply sectioned Bayesian networks (MSBNs) provide one framework for agents to estimate the state of a domain. Existing methods for multi-agent inference in MSBNs are based on linked junction forests (LJFs). The methods are extensions of message passing in junction trees for inference in singleagent Bayesian networks (BNs). We consider extending other inference methods in single-agent BNs to ...

متن کامل

Distributed Structure Verification in Multiply Sectioned Bayesian Networks

Multiply sectioned Bayesian networks (MSBNs) provide a framework for probabilistic reasoning in a single user oriented system in a large problem domain or in a cooperative multi-agent distributed interpretation system. During the construction or dynamic formation of a MSBN, an automatic verification of the acyclicity of the overall structure is desired. Although algorithms for testing acyclicit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012